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Abstract

With the advent of Edge Computing, suitable, practical, and novel
abstractions are required for applications to leverage the existing compu-
tational power at the edge. In particular, applications in the domains of
smart cities and the Internet of Things (IoT) can rely on devices in the
vicinity of data consumers and producers for their operation. While these
devices are expected to be equipped with wireless radios, network infras-
tructure might be unavailable in many scenarios. In those cases, devices
must rely on wireless ad hoc networks for coordination and cooperation.
In this context, one of the most important primitives is the broadcast
of messages, that can be leveraged as a building block to devise more
complex distributed services and applications.

The literature on wireless ad hoc broadcast algorithms is quite vast,
with many different algorithms being proposed which explore or combine
different techniques or features in their operation. While such protocols
are becoming increasingly relevant, understanding how they relate among
them is complicated. To address this challenge, in this paper, we introduce
a novel framework that allows to abstract the operation of wireless ad
hoc broadcast protocols. Leveraging on our framework, we explore a
particularly interesting class of these protocols: neighbor-aware ad hoc
broadcast protocols; of which we propose 4 novel protocols. Finally, we
rely on a materialization of our framework to implement prototypes of
these protocols and experimentally study their performance in a testbed
composed of 21 Raspberry Pi 3 - model B.

1 Introduction

The edge computing paradigm [25] emerged to address the limitations of current
cloud-based applications. These applications produce high volumes of data [6]
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which render cloud infrastructures unable to timely process and provide re-
sponses to application clients. As such, the edge computing paradigm promotes
moving computations beyond cloud datacenter boundaries towards data produc-
ers and consumers. Edge computing however, can be materialized across very
distinct scenarios involving different hardware [16], from fog computing [30] to
IoT networks [1,23] where IoT devices may own some computational power. In
this paper, we focus on a concrete scenario of edge computing, where wireless-
capable commodity devices form a wireless ad hoc network [4]. Such scenario
can be found in application domains related with smart cities and IoT, where
devices do not have access to network infrastructure.

To enable the emergence of novel applications leveraging the computational
resources in wireless-capable devices, adequate abstractions should be provided.
A fundamental primitive for supporting distributed applications is the broadcast
of messages [8], where a message sent by a single process is collaboratively
disseminated and delivered by all processes in the system. Broadcast primitives
are an essential building block of complex distributed applications and protocols
[2, 7, 10, 17, 31] as a means to achieve coordination and collaboration among
processes.

Unfortunately, ensuring that all processes deliver a message in a system
where nodes interact through a shared wireless medium, without an access
point, is a non-trivial task. This is because when two processes (in two dis-
tinct nodes) within transmission range of each other, transmit a message at the
same time, a collision might occur, leading those messages to not be delivered to
any other process within range, or only to a subset. As we discuss further ahead,
when collaboratively broadcasting a message throughout the network, nodes are
more likely to attempt to retransmit a message simultaneously, increasing the
probability of collision. Furthermore, if retransmission policies, akin to the ones
employed in wired networks with explicit acknowledgments (e.g., TCP acknowl-
edgement and retransmission mechanisms), to recover lost messages are used,
the possibility to saturate the wireless medium grows even further, potentially
leading to the well-known broadcast storm problem [29], effectively rendering
any form of communication among processes impossible.

With the goal to avoid broadcast storms, some broadcast protocols that
were previously proposed in the context of wireless ad hoc networks [18, 19,
32], tend to be probabilistic in nature, avoiding explicit acknowledgment of
messages and avoiding all processes to perform retransmissions, while exploring
complementary mechanisms to maximize their reliability (i.e., ensure that the
vast majority of processes delivers every broadcasted message). This has led to
the emergence of many variants of those techniques and protocols that explore
them in different combinations and/or using different parameterizations, leading
to a vast number of different alternatives (e.g., [13, 18–21, 24, 27]). We note,
however, that many broadcast protocols present a similar design pattern, being
composed by a retransmission policy, which defines the (local) strategy of each
process for deciding when to retransmit, or not, a given received message, and
a delay policy, that encodes when that decision should be made.

This common design pattern motivated us to devise a generic framework for
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specifying wireless ad hoc broadcast algorithms. The framework captures some
of the key aspects that govern the operation of several wireless ad hoc broadcast
protocols, which are the retransmission delay, the retransmission context,
and the retransmission policy employed by the protocol. These three aspects
work together for the efficient operation of a broadcast protocol: the retrans-
mission delay provides a waiting period to gather environmental information,
which is dictated by the retransmission context (e.g., number of neighboring
nodes within transmission range), and leveraged by a retransmission policy
to decide if a retransmission should proceed or not. Our framework promotes
these aspects to be parameters for a generic broadcast protocol, enabling a wide
range of protocols to be easily specified. We note, however, that such aspects
can also be parameterized as “empty”, when they are not required by a proto-
col. Furthermore, to promote the focus of the framework over the key aspects
of broadcast protocols, the framework abstracts common, but essential, aspects
that are prevalent in the design of such protocols, including the tracking of mes-
sages already delivered (to avoid duplicates); the gathering of environmental
information that is provided (locally) to each protocol, which is used to affect
its local decisions; and the scheduling of retransmissions.

Our framework also allows for efficient and modular implementation of these
protocols. To this end, we have built a prototype of a small kernel for designing,
implementing, and executing broadcast protocols in wireless ad hoc networks,
whose design follows directly from the concepts defined by our framework. We
leveraged our framework, and the protocol kernel prototype derived from it, to
study and extend the existing state of the art for a particular area of the design
space of wireless ad hoc broadcast protocols: neighbor-aware protocols. These
protocols take into consideration information regarding the local neighborhood
of a node (which can be obtained by static configuration or through the use
of a simple companion protocol) to govern the execution of the distributed
broadcast process, in particular, in the definition of the retransmission policy
and associated delay, employed by each node. We explore 4 novel variants of
this class of protocols, specifying them, and performing an experimental study
of their performance in a realistic scenario with real devices (Raspberry Pi 3 -
model B).

The remainder of the paper is structured as follows: Section 2 discusses
the key properties and different techniques employed in the design of broad-
cast algorithms for wireless ad hoc networks; Section 3 provides an overview of
our framework to model the operation of wireless ad hoc broadcast protocols;
Section 4 delves into the class of neighbor-aware broadcast algorithms (which
we dub NABA), presenting a set of novel variants in this class of algorithms;
Section 5 provides a practical evaluation of broadcast algorithms; Section 6
discusses the related work; Section 7 concludes the paper.
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2 Broadcasting in Wireless Networks

In a distributed system, broadcast protocols aim at delivering messages, that
can be sent by any process, to all processes. In a wireless ad hoc network, pro-
cesses communicate via the exchange of messages through the wireless medium.
In this context, it is frequent to leverage on one-hop broadcast [28], which
allows a node to send the same message to all other nodes within its radio
transmission range (neighbours), with a single transmission. The use of one-
hop broadcast is relevant since it saves power and reduces the occupation of the
wireless medium when compared with sending the message point-to-point to all
neighboring nodes. In this paper, we consider multi-hop networks, where not
all nodes are directly reachable by every other node. For a message to reach
all nodes in the system in such scenarios, nodes have to retransmit received
messages such that messages transverse the network, and are received by all
participants. Naturally, this retransmission process might lead some nodes to
receive a message more than once. Such redundant messages should not be
delivered to application layers [8].

2.1 Performance Metrics and Retransmission Policies

Collaborative broadcast protocols, as it is the case of wireless ad hoc broadcast
protocols, strive to achieve two conflicting goals. On the one hand, these proto-
cols strive to maximize the reliability of the broadcast process, which usually is
defined as the fraction of (correct) nodes that delivered a broadcast message [15].
On the other hand, these protocols aim at minimizing the cost of each broadcast
message, which is defined as being the number of individual retransmissions that
are required to spread the message through the entire network. The conflicting
nature of these goals derives from the lack of independence between them, for
instance, it is possible to lower the transmission cost of a broadcast protocol by
never retransmitting the message but this will have a negative impact on the
reliability of that protocol.

Due to this tension between goals of broadcast protocols, at their core one
can usually find a retransmission policy, that allows a node to make a (typically
local) decision regarding its need to retransmit a message received from another
node. Intuitively, such policies will strive to avoid retransmissions that are not
going to lead to message deliveries for the application (i.e., transmissions that
will not reach nodes that have not yet received the message) and/or ensure that
the message is retransmitted if there are nodes within the transmission range
that have not received that message yet. In the following, we discuss different
retransmission policies that can be found in the literature.

Usually, nodes will only consider retransmitting a message when they receive
it for the first time. However, and as we detail further ahead, some policies might
consider the number of received duplicates of a message to be retransmitted to
make their decision.

4



2.1.1 Always Yes

The simplest retransmission policy that can be employed is to have every node
in the system to retransmit each received message. This is the policy implicitly
associated with flooding [29] protocols. Although this policy is simple and
(potentially) robust, it promotes a high cost for the broadcast process.

2.1.2 Probabilistic

Another frequently observed alternative is to rely on a probabilistic policy, where
each node retransmits each message (observed for the first time) with a given
probability p, where p is a protocol parameter. This approach is employed by
protocols that follow gossip-based approaches [3, 9, 11, 24]. It reduces the cost
of the broadcast process, at the risk of impairing reliability if nodes, that are
essential for the success of the dissemination process, decide to not retransmit
the message.

2.1.3 Counting

Counting is a policy that relies on counting the number of observed duplicates
for a message (for a given period of time) to make a more informed decision
regarding the need to retransmit that message [3, 19, 29, 36]. Usually, such
policy will rely on a parameter c which is the minimum number of counted
duplicate messages that are necessary for a node to decide not to retransmit a
message. While the intuition of such policy is easy to grasp, it does not take
into account the local topology of the network, and hence, it may lead nodes
that are bridging different partitions of the network to decide not to transmit
messages, disrupting the reliability of the broadcast process.

2.1.4 Distance-based

Some broadcast protocols [29, 33] take into account the distance between the
sending and the receiving nodes to bias the decision of the later to retransmit
a given message. The intuition associated with such policy is that nodes that
are farther from the sender will cover a higher number of new nodes if they
retransmit a message, compared with nodes that are closer to it. Hence, this
policy will take into account the distance to the sender and retransmit a message
only if this distance is above a threshold d or adjust locally the probability of
retransmission (p) to be proportional to the distance. While this policy can be
highly effective [33] it requires nodes to either know their positions (through
GPS for instance) or to infer their relative distances by taking into account
the power of the received radio signal (which is employed in some variants of
PAMPA [33]). However, the hardware support to obtain such information might
not be available in commodity devices.
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2.1.5 Location-based

This policy [27] is similar to the distance-based policy, however, instead of tak-
ing into account only the relative distance between the sender and the receiver
to perform retransmission decisions, it requires nodes to have complete knowl-
edge of their positions and surroundings, which allows them to make a more
precise decision on the utility of their message’s retransmissions.

2.1.6 Neighbor-based

Neighbor-based retransmission policies [13,34,35] rely on topology information,
obtained by each node, regarding the nodes in direct range of transmission, or
up to some number of hops in the network, to compute the utility of a message
retransmission. This information can be leveraged in a different number of ways:
from using the observed number of direct neighbors to control the probability of
retransmission (combining this with probabilistic retransmission policies) or to
adjust the number of duplicate messages that a node has to receive to cancel its
own retransmission (combining this approach with counting policies described
above). We will revisit this class of retransmission policies in Section 4 where
we also propose novel variants of wireless ad hoc broadcast protocols leveraging
on these policies.

2.2 Environmental Sensing and Retransmission Context

Some of the retransmission policies discussed above require nodes to gather in-
formation (even if this information is imprecise) on their execution environment.
In particular: i) Distance-based policies need information concerning the rela-
tive distance between the message sender and receiver to make a retransmission
decision; ii) Location-based policies require information on the position of nodes
in some space coordinates system for their operation; and finally, iii) Neighbor-
based policies require information about neighboring relations with other nodes
up to a given horizon (i.e., 1− hop which is direct neighbors, 2− hop which in-
cludes knowing the neighboring relations of their direct neighbors, or generally
n − hop where if n ≥ to the diameter of the network implies that a node has
full knowledge about the system topology).

We note that, contrary for instance, to counting message duplicates, which
can be easily handled at the wireless ad hoc broadcast protocol level, such infor-
mation requires external support, either external (static) configuration provided
by users, access to additional information extracted from the device hardware
(e.g., from the radio to extract the strength of the radio signal or from a GPS de-
vice), or even by a companion protocol being executed alongside the broadcast
protocol. To these external sources of information, that support the execu-
tion of broadcast protocols leveraging particular retransmission policies, we call
retransmission context.

While there are many possible retransmission contexts that can be useful
for devising wireless ad hoc broadcast protocols in general, and retransmission
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policies in particular, in this paper we focus on the three previously identified
contexts: distance context, location context, and neighbor-aware context.

2.3 Avoiding Broadcast Storms and Retransmission Delay

Avoiding broadcast storms is essential to achieve high reliability for broadcast
protocols. Network collisions in the wireless medium will lead to message losses,
which might affect negatively the assumptions of protocols and, consequently,
their reliability. Network collisions happen when nodes within transmission
range decide to transmit a message at the same time. As such, a simple solu-
tion to avoid these phenomena is to delay retransmissions of messages (using
some jitter) to minimize the probability of having nodes synchronizing their
retransmissions.

Additionally, some of the previously discussed retransmission policies require
some period of time to gather information to make a decision. For instance,
considering the counting policy described above, some time has to pass since
the reception of the first copy of a message to offer the opportunity for a node
to count duplicate message retransmissions. Note that, if all nodes that are
neighbors of a node that transmitted a message wait for the same time, all of
them would retransmit simultaneously because none would observe a duplicate
message. Such transmissions would potentially lead to collisions, compromising
their usefulness for achieving high reliability.

This implies that defining such retransmission delays might require more
sophisticated mechanisms, for instance, the retransmission delay of a node for
a given message received for the first time might depend on the retransmission
context of that node as described above. As an example, consider again the
counting retransmission policy. It could be useful to apply a retransmission
delay that would be inversely proportional to the distance of the sender, such
that nodes that are farther away will decide to retransmit earlier, enabling nodes
closer to the sender to avoid their retransmissions, and potentially covering
larger number of nodes that have not observed that message yet (in fact, this is
very similar to the approach taken by PAMPA [19]).

3 Wireless Broadcast Algorithms Framework

In this section, we present our conceptual framework that captures the operation
of a wide range of wireless ad hoc broadcast protocols. Our framework design
derives directly from the observations presented previously (Section 2). Our key
insight for devising this framework is that most protocols to support wireless ad
hoc broadcast present similar architectural patterns, differing primarily on the
employed retransmission policy, their strategies to compute a retransmission
delay, and what is the required (external) retransmission context that provides
environmental information for the retransmission policy and the computing of
the retransmission delay.
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Figure 1: Workflow for a Generic Wireless Ad hoc Broadcast Protocol

Additionally, we note that some approaches (e.g., [18]) rely on multiple
rounds of (potential) retransmissions of a single message, where the protocol
reevaluates the need of retransmitting the message. To accommodate these
class of protocols, we enrich our framework with an additional parameter de-
nominated phases [18] that encodes the number of times, for each newly received
message, that a protocol will evaluate its decision to retransmit that message.
For simplicity, we assume that the time between these distinct phases is pro-
vided by the same function that computes the retransmission delay for protocols
that only consider, at most, a single message retransmission.

In the following we present the overview of the workflow of a generic wireless
ad hoc broadcast protocol, that lies at the core of our framework, explaining our
notation to represent different protocols. We then provide examples of possible
materializations for its components, and finally, present the specification of a
set of representative wireless ad hoc broadcast protocols using our framework.

3.1 Overview

Figure 1 presents a simplified flux diagram that captures the workflow of a
generic wireless ad hoc broadcast protocol. The diagram describes the workflow
for a particular message m. Evidently, multiple workflows for different messages
might be concurrently active in the context of a single node.

The workflow starts with the reception of a message. We assume messages
have a unique identifier that allows the protocol to easily detect duplicates.
Upon the reception of a message, the first step of our generic protocol is to
check if this is the first time that the message is observed. If this is not the
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case (if the message is a duplicate) and if the protocol is still processing this
message (i.e., if there is an active workflow for that message) we simply register
the reception of the duplicate (and the source of the transmission). This is
relevant for protocols that take into account the reception of duplicates in their
operation.

However, if the message is received for the first time, this will trigger the
start of the retransmission process (starting at retransmission phase 1). As
the first step of this process, our generic protocol computes the retransmission
delay to be applied for this message. The retransmission delay computation is
performed by using a function that is provided to our framework as a parameter.
The complexity of such function can be highly variable (we discuss the design
of some of these functions in Section 3.2.2), it receives as input the received
message, the identifier of the node from whom the message was received, and the
number of the retransmission phase in which the protocol is (all messages start
in phase 1). Note that the function that computes the transmission delay may
query the retransmission context, which is also a parameter in our framework
(more details in Section 3.2.1).

After computing the retransmission delay, the workflow proceeds by wait-
ing for that amount of time, after which it executes the retransmission policy
function, which is another parameter provided to our framework. Similar to the
retransmission delay, the function that executes our retransmission policy can
be arbitrarily complex. It receives as input the same information as the retrans-
mission delay function, and similarly, it can query the retransmission context
to obtain additional information that can be useful for computing the decision
to retransmit or not the message. Additionally, the retransmission policy can
also query the local information of our broadcast protocol, that keeps track of
all duplicate messages received (for messages whose workflows are still under
execution).

If the retransmission policy decides to retransmit the message, it will re-
quest the transmission to the local device. Independently of the decision, the
workflow proceeds by verifying if the protocol has reached the last retransmis-
sion phase, by comparing the current phase of the protocol with the number
of retransmission phases associated with that protocol (parameter NP). If the
generic protocol was configured to execute additional retransmission phases, the
current phase is incremented, and the protocol goes back to the computation
of the retransmission delay. Otherwise, the workflow for the current message
terminates (and information about duplicates received for that message can be
garbage collected).

3.2 Framework Parameters

Notice that there are four parameters associated with the execution of our
generic wireless ad hoc protocol described above. This implies that a wireless ad
hoc broadcast protocol is defined in our framework by specifying the values of
these four parameters. More precisely, in our framework a concrete wireless ad
hoc broadcast protocol can be specified as a tuple: (RC,RDF,RPF,NP), where
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RC stands for the Retransmission Context, RDF represents the Retransmission
Delay Function, RPF denotes the Retransmission Policy Function, and finally,
NP denotes the number of retransmission phases configured for that protocol.

In the following, we will discuss examples of possible values for these param-
eters.

3.2.1 Retransmission Context

We now briefly discuss some of the retransmission contexts that can be employed
in the design of concrete wireless ad hoc broadcast protocols.

⊥ This is the non-existing context and is employed to denote protocols that
do not take into account any environmental external information.

PowerAware This is a context that records, for each received message, the
radio signal strength associated with that transmission. It will further normalize
this intensity to a common reference (that depends on the recent history of
received transmissions). As it will be shown further ahead, this retransmission
context is employed in the design of the families of protocols PAMPA [19] and
Flow-Aware [18].

GPS This is a context that provides to each node its own set of GPS coor-
dinates. Furthermore, this retransmission context will also tag any outbound
message with the location of the transmitting node (this effectively allows nodes
that receive a message to compute the distance to the sender).

Neighbors(H) This is a particularly interesting retransmission context since
it does not require specialized hardware. This context will provide each node
information about their neighbors and their neighbors’ neighbors and so forth,
up to an horizon of H network hops. While this can be materialized by static
configuration files in static settings (i.e., where nodes are stationary), it can also
be materialized through a simple neighboring protocol where nodes exchange
periodic announcement messages, where they include information about their
neighbors (up to H − 1 hops).

3.2.2 Retransmission Delay Function

We now provide some examples of possible retransmission delay functions that
can be employed when building concrete wireless ad hoc broadcast protocols.
We remind the reader that these functions have as (base) input the message
m being processed, the sender s from whom the message was received, and the
current retransmission phase p in which the protocol is for message m. As it will
become obvious, not all retransmission delay functions use these inputs. We,
however, represent them for completeness of presentation.
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Random(T ,m,s,p) This is a simple function that computes a small random
delay (up to T ) that aims at minimizing the probability of two (neighboring)
nodes retransmitting a message received from the same peer simultaneously.

DistanceByPower(T ,m,s,p) This function assumes a context where the trans-
mission power associated with a given received message is known. Based on this,
this function computes a retransmission delay of at most T , that is proportional
to the power of the radio signal of the received message (i.e, weaker radio signals
will lead to smaller delays).

NeighBased(T ,m,s,p) This function assumes a context where nodes have
information about their neighbors, in particular the number of neighbors that
they have. Based on this information, this function computes a delay, with a
maximum value of T , that is inversely proportional to the number of neighbors.
This implies that nodes with a higher number of neighbors will use smaller
delays, while nodes with fewer neighbors will use delays close to T .

3.2.3 Retransmission Policy Function

We now present some examples of possible retransmission policies that can
be employed when building concrete wireless ad hoc broadcast protocols. We
remind the reader that retransmission policies have the same (base) input values
as the functions that compute the retransmission delays.

True(m,s,p) This is a simple policy that always decides to retransmit a mes-
sage.

Probability(λ,m,s,p) This is another simple policy that returns a positive
decision with a probability λ, independently of the other input parameters of
the function.

Count(c,m,s,p) This encodes a counting retransmission policy, where the de-
cision to retransmit a message is only positive if the number of duplicates re-
ceived (including the first reception) for that message is below c.

AdditionalCoverage(ε,m,s,p) This denotes a retransmission policy that lever-
ages a retransmission context that allows nodes to infer their own location and
the location of nodes from whom they originally received m and any duplicate
of m. Based on this information, the node will compute the amount of area that
a retransmission performed by itself will cover, considering the area already cov-
ered by the nodes that already retransmitted the message. If this area is above
a given threshold ε it will decide to retransmit message m, otherwise, the node
will decide not to retransmit m.
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CoveredNeighbors(k,m,s,p) This denotes a retransmission policy that, sim-
ilar to the previous one, takes into account the nodes from whom a copy of m
was received and assumes a context that allows nodes to know the neighborhood
of nodes (to an horizon of 2 hops). Based on this information, it computes the
number of new nodes that will receive the message by its retransmission. If this
value is above k, a retransmission is performed, otherwise, the node refrains
form retransmitting the message.

3.3 Examples of Protocol Specification

To illustrate the ability of our framework to specify and capture the particu-
larities of existing wireless ad hoc broadcast protocols, we now provide their
specification resorting to the examples of retransmission delay functions, re-
transmission policy functions, and retransmission contexts discussed previously.
We have selected a representative protocol for each of the classes discussed
in Section 2. We note that to improve readability we only present the param-
eters that are specific for each retransmission delay and retransmission policy
functions. Parameters have values that illustrate a concrete (and possible) ma-
terialization of these protocols.

3.3.1 Flood-based Broadcast

Flood based broadcast protocols can be easily described in our framework as:
(⊥, Random(100), True, 1). This implies that the protocol operates with no
need of a retransmission context, applying a random delay of at most T = 100ms
before transmissions, where the retransmission policy is to always retransmit
every message, with a single retransmission phase (i.e., each message is retrans-
mitted by each node exactly one time). This is the most simple of the broadcast
protocols that we consider.

3.3.2 Probabilistic Broadcast

Probabilistic broadcast protocols are very similar to flood-based protocols, with
the key difference that nodes only retransmit each message with a given prob-
ability. In this example, we consider a protocol where the probability of re-
transmitting a message is λ = 0.8 and a random delay of T = 100ms. Such a
probabilistic protocol can be described in our framework as: (⊥, Random(100),
Probability(0.8), 1).

3.3.3 Counting Broadcast

Here we consider a simple counting broadcast protocol, that retransmits a mes-
sage after a random amount of time, of at most T = 1000ms, if the number of
duplicates is below c = 2. Such a protocol is specified in our framework as: (⊥,
Random(1000), Count(2), 1).
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3.3.4 Distance-based Broadcast (PAMPA and Flow-Aware)

PAMPA [19] is a solution that delays the retransmission of a message m con-
sidering the strength of the radio signal of the first reception of m. Hence, the
protocol operates with access to an external source of information that allows
obtaining these (normalized) values for received messages, which we refer as
using the PowerAware retransmission context.

In particular, the weaker the signal the smaller the delay used by a node (in
this example we consider a delay of at most 500ms). When this delay expires,
a node will only retransmit a message m if it has not observed 2 copies of
that message transmitted by other nodes. In this protocol, each node attempts
to retransmit a message a single time. Hence, PAMPA can be described as:
(PowerAware, DistanceByPower(500), Count(2), 1)

Flow-Aware [18] is a variant of PAMPA that introduced the use of two
phases of retransmission. Naturally the specification of this protocol is very
similar to PAMPA, and a simplification can be captured by: (PowerAware,
DistanceByPower(500), Count(2), 2).

3.3.5 Location-based Broadcast

We consider a simple variant of the algorithm described in [27], whereas nodes
are assumed to have access to a local GPS device that allows them to obtain
their location. We denote this by noting that this protocol operates using the
GPS retransmission context. This context transparently captures messages sent
by nodes, and adds control information indicating the location of the node. The
protocol operates as follows: when a node receives a message m, it will attempt
to retransmit the m after a small random delay (to minimize collisions). To de-
cide if a retransmission is useful, the node takes into account the location of all
nodes from whom it received copies of m and computes the amount of area that
a retransmission performed by itself would cover, that was not yet covered by
previously received transmissions of that message. If this area is above a given
threshold (in this case we assume ε = 25%) the node proceeds with the retrans-
mission, otherwise, it will consider that the additional coverage offered by its
transmission is not sufficiently large and avoids the retransmission. Each node
attempts to retransmit each message a single time. In our framework we specify
such a protocol as: (GPS, Random(100), AdditionalCoverage(25%), 1).

3.3.6 Neighbor-aware Broadcast (LENWB)

Finally, we provide an example of a neighbor-aware broadcast protocol, in par-
ticular, the LENWB protocol described originally in [26]. This protocol contin-
uously transmits hello packets containing its local perception of its neighbors,
which enables every node to build a knowledge of the network topology with an
horizon of 2 hops. We capture this by stating that this protocol operates with
a retransmission context of Neighbors(2). The protocol operates as follows:
when it receives a message m it will apply a delay, before attempting to retrans-
mit the message, that depends on the number of neighbors of that node (nodes
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with fewer neighbors will compute higher delays, which we assume will be at
most 500ms). After this delay, the node compares its neighbors list with the list
of all nodes from whom it received a copy of m. If its transmission will only reach
nodes that have been covered by previous transmissions of m it decides not to
retransmit the message, otherwise it retransmits m. Each node only attempts
to retransmit a message a single time. In our framework this protocol can be
described as: (Neighbors(2), NeighBased(500), CoveredNeighbors, 1).

4 NABA: Neighbor-Aware Broadcast Algorithms

In this section, we leverage the framework previously described to study the fam-
ily of protocols that relies on neighboring information, that we name Neighbor-
Aware Broadcast Algorithms, or simply, NABA. We consider this class of pro-
tocols to be of particular relevance, due to the fact that they can be implemented
in commodity hardware without resorting to specialized hardware (such as GPS
receivers or radios that are capable of measuring the strength of the radio signal
associated with received messages).

4.1 Neighbor-Aware Retransmission Context

Broadcast protocols that leverage information about the local network topology
for their operation can obtain this information through a companion protocol
that periodically transmits an announcement containing the node’s identifiers.
If the n-hop neighborhood is also required, such announcements can also carry
the information obtained so far for neighbors up to n− 1 hops.

We notice, however, that not all nodes are important for the successful re-
transmission of a broadcast message, an observation also made by other neighbor-
based broadcast algorithms [21,22,34]. Hence, a simple discovery protocol, such
as the one described above, could be enriched to compute the relationships be-
tween nodes regarding message retransmission coverage. These relationships can
be computed by performing comparisons of neighbor sets between neighboring
nodes, attributing to each neighboring a label: i) Reduntant ; ii) Covered ; or iii)
Critical. We refer to this enriched context as LabelNeigh(H), being H = 2 in
our solution.

These labels are computed between two neighboring nodes a and b in the
following way. The neighbor b of a node a is said to have a relation of Reduntant
if, and only if, the neighbors of b are the same as the neighbors of a (excluding
a and b). The neighbor b of a node a is said to have a relation of Covered if, and
only if, the neighbors of b are a strict subset (i.e., all neighbor of b are contained
in) of a’s neighbors. The neighbor b of a node a is said to have a relation of
Critical, if it is neither Redundant nor Covered.
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4.2 Neighbor-Aware Retransmission Policies

Neighbor-based broadcast algorithms whose retransmission policy is only based
on the coverage of neighbors can be enriched with additional information. The
retransmission policies presented here, all present the dependency of a neighbor
retransmission context. We now present 3 different neighbor-aware retransmis-
sion policies:

NeighborCounting(c,m,s,p) This retransmission policy enriches a counting
policy (with parameter c) with information about the number of neighbors of
the local node. The decision to retransmit the message is only positive when
the number of received duplicates is lower than the minimum between c and the
number of neighbors of the current node.

PbNeighCounting(c1,c2,m,s,p) This retransmission policy enriches the first
one, with two threshold parameters c1 and c2, where c1 < c2. If the number of
received duplicates of m is greater than or equal to the minimum between the
number of neighbors of that node and c2, it does not retransmit the message.
Otherwise, if the number of received duplicate messages c is lower than c1, the
message is retransmitted. If the number of received duplicates c is between c1
and c2, a probability based on c is calculated to retransmit the message, having
higher probabilities for lower values of c.

CriticalNeigh(m,s,p) This retransmission policy leverages the labels com-
puted by the neighbor-aware retransmission contexts to perform retransmission
decisions. A message is only retransmitted if the sender s has been labeled as
Critical, or s = ⊥. This policy can also leverage multiple phases to ensure that
Critical nodes are able to propagate messages, as such, when the phase p is
greater than 1, the policy counts the number of all retransmissions performed
by Critical neighbors, retransmitting the message if at least one such neighbor
has failed to transmit the message.

Based on the policies described above, we derived the following protocols:

NABA1: (Neighbors(1),NeighBased(1000),NeighborCounting(2),1)

NABA2: (Neighbors(1),NeighBased(1000),PbNeighCounting(1,4),1)

NABA3: (LabelNeigh(2),NeighBased(1000),CriticalNeigh(),1)

NABA4: (LabelNeigh(2),NeighBased(1000),CriticalNeigh(),2)

In the following section, we experimentally access the performance of these
variants and compare it with the existing state of the art.

5 Evaluation

In this section, we describe our practical assessment of a variety of broadcast
algorithms resorting to our framework. The framework and all the modules used
in our evaluation were implemented in the C language resorting to Yggdrasil [4],
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Label Specification
Flood (⊥, Random(1000), True, 1)
Counting (⊥, Random(1000),Count(2),1)
Gossip (⊥, Random(1000), Probability(0.8), 1)
LENWB (Neighbors(2), NeighBased(1000), CoveredNeighbors, 1)
NABA1 (Neighbors(1),NeighBased(1000),NeighborCounting(2),1)
NABA2 (Neighbors(1),NeighBased(1000),PbNeighCounting(1,4),1)
NABA3 (LabelNeigh(2),NeighBased(1000),CriticalNeigh(),1)
NABA4 (LabelNeigh(2),NeighBased(1000),CriticalNeigh(),2)

Table 1: Label and Specificaiton of Tested Broadcast Protocols

a framework to develop wireless ad hoc protocols that encourages protocols to
be developed with clean event-driven interfaces.

We have implemented a small and parameterizable kernel for wireless ad
hoc broadcast protocols, that fundamentally is an implementation of the generic
protocol previously presented in Section 3. We further implemented the retrans-
mission delay and policy functions described previously that do not require spe-
cialized hardware. We implemented the neighbor-aware contexts as companion
protocols, that execute alongside the broadcast protocol and expose an interface
to allow other protocols to obtain context information from it.

In the following, we describe our experimental methodology and discuss our
experimental results.

5.1 Experimental Methodology

We have conducted experiments with the protocols described in Table 1. Notice
that we describe the protocols that we used in our experiences using the notation
of the framework described previously. All time references are in milliseconds.

The companion protocols that gather information about the local topology
was configured to issue messages every six seconds, to minimize the contention
in the wireless medium due to this protocol.

We have conducted our experiments using a practical testbed, composed of
21 Raspberry Pi 3 - model B, in two different scenarios. One where the nodes are
dispersed through our department building, along two hallways, with approx-
imately 30 meters, and several rooms (illustrated schematically in Figure 2a).
Due to the unpredictability of the computed neighborhood in each experiment
in the first scenario, we also conducted experiments in a second scenario, where
all nodes were collocated in a single room, and we have artificially restricted
neighborhood relationships, effectively producing a logical overlay network (the
logical network is illustrated in Figure 2b) [5]. We note that this last scenario is
highly challenging for broadcast protocols because, although devices are filter-
ing messages from nodes with whom they lack a logical relation, their messages
still collide, which results in significant contention in the wireless medium.

All reported experiments had a duration of 10 minutes (600 seconds) with
grace periods in the beginning (60 seconds in the disperse scenario and 5 seconds
in the local scenario) and the end (60 seconds in both scenarios). This allowed
our experimental deployment to stabilize. Each experiment is executed 3 times
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Figure 2: Node distribution in each scenario

and the results show the average of all (independent) runs. In the following we
present the experimental results in both scenarios.

5.2 Experimental Results

Our experimental evaluation was focused on the relevant performance metrics
of wireless ad hoc broadcast protocols previously discussed: reliability (average
fraction of correct processes that delivered a broadcast message), and cost (the
average number of transmissions performed to disseminate a message). A reli-
ability of 100% implies that all messages were delivered to all correct processes
in the system. Notice that the cost is relative to the total number of processes
in the system. Solutions where each node performs a single transmission per
message results in a cost of 21 (as our experimental setup is composed of 21
nodes).

5.2.1 Stable Scenario

In this set of experiments, we have configured each node to perform a broad-
cast every 2 seconds with a probability of 50%. Our goal was to study the
performance of different alternatives in executions where nodes do not fail (still
collisions may happen in the wireless medium). In each experiment, approxi-
mately a total of 3150 messages were broadcast. Plots encode simultaneously
the average reliability (left y-axis, purple bars) and cost (right y-axis, green
bars) for each broadcast protocol.

Disperse Scenario Figure 3a shows the results we have obtained in this set-
ting where nodes are scattered across the hallways of our department. Flooding
shows expected results, it achieves perfect reliability at the cost of having each
node retransmitting each message once. We note that the success of this pro-
tocol is in part due to the high random delay of 1000ms which significantly
minimizes the risk of collisions in the wireless medium. However, such a solu-
tion could not be sustained if the transmission rate of nodes was higher. The
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(a) Broadcast Algorithms in Disperse Sce-
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(b) Broadcast Algorithms in Local Scenario

gossip solution achieves slightly lower reliability, however, the cost is lower due
to its probabilistic nature (the cost is reduced by approximately 20% as ex-
pected). The counting solution has reliability slightly above 90%. The reason
for this is the c parameter set to 2. This confirms our previous observation,
that the lack of information about the local network topology leads some nodes,
that are bridging different partitions of the network, to not retransmit messages.
However, it exhibits the lowest cost among all tested protocols.

Concerning the neighbor-aware broadcast solutions, we note that the one
with best overall performance is NABA2, having reliability of 100% at the low-
est cost. This is an interesting result, as this protocol relies on a very simple
retransmission context (it only requires each node to keep track of its direct
neighbors) and it combines this solution with a retransmission policy that al-
ways retransmits messages when no duplicate messages are received, except
when nodes have fewer or equal neighboring nodes to parameter c1 (in this
case c1 = 1), avoiding redundant retransmissions. When more duplicates are
received this protocol decides to retransmit with a probability that lowers with
the number of duplicates (becoming zero after the reception of 4 duplicates).
The only other protocol to achieve a reliability of 100% is NABA4, that attempts
to identify critical nodes to retransmit messages and, for those, it can attempt
to retransmit messages twice. However, this second retransmission leads to the
cost of this solution becoming too high, even above that of flooding. LENWB
and NABA1 also performed well, having reliability close to 100% with low cost.
NABA3 showed similar reliability but at a higher cost. An interesting aspect
here is that the policies CoveredNeighbors and NeighborCouting(2) ap-
pear to be effectively equivalent. This happens because our experiments were
conducted in a static topology, where nodes have no mobility. At a high level,
both policies strive to ensure coverage of all neighbors. However, it is expected
that NeighborCouting (2) should present superior results in dynamic topolo-
gies.

Local Scenario Figure 3b reports our results for the local scenario, which
employs the logical network to restrict the origins of messages that nodes can
receive and process, effectively lowering the natural redundancy promoted by
the use of one-hop broadcast. Notice that contention in the wireless medium is
higher in this scenario. The results show that NABA3 and NABA4, which re-
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Figure 3: Average reliability in the faulty scenario

sort to the LabelNeigh(2) context, achieve the best performance overall, with
high reliability and lower cost. In this context, the second phase of retrans-
mission in NABA4 becomes useful, making this the only protocol to achieve
100% reliability. The other protocols are significantly affected by the lack of
redundancy in the wireless network. The key take away from these results is
twofold: i) identifying nodes that are in strategic positions in the network is es-
sential for achieving adequate performance in sparse networks; and ii) multiple
retransmission phases are adequate only for this type of network.

5.2.2 Faulty Scenarios

To effectively evaluate the effects of faults in the evaluated protocols, we have
performed experiments in our local scenario, where we introduced three simul-
taneous node crashes (on nodes 9, 10, and 18, see Figure 2b). These node
crashes make the network more sparse further reducing redundant communi-
cation paths. In these experiments, all nodes transmit every 20 seconds and
failures occur around the 370s mark. Figure 3 report the reliability over time
with faults being marked by the vertical line).

All protocols are able to sustain their reliability to values that are consistent
with those reported in Figure 3b, with the exception of NABA1 whose reliability
increases to become on par with most of the solutions (notice that only NABA4
is able to achieve a reliability of 100% with a small drop after failures). The
results obtained for NABA1 are explainable by the fact that failures reduce re-
dundancy, leading nodes to be unable to receive two redundant messages before
executing the retransmission policy (which incidentally is executed at a later
time for some nodes), hence the protocol operation becomes similar to flood.
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6 Related Work

Having already discussed several wireless ad hoc broadcast protocols, here we
focus on frameworks for defining them.

The authors of [12] present a generic conceptual framework for designing
peer sampling services based on gossip protocols in wired environments. Gossip
protocols have been the basis for many dissemination abstractions [14] in wired
networks and many wireless ad hoc broadcast protocols follow their design.
However, this framework does not discuss a generic broadcast protocol as our
does.

Frameworks for broadcast protocols in wireless networks have also been ex-
plored in [34] and [35] however, these only consider neighbor-aware broadcast
protocols that rely on the computation of connected dominating sets, to define
which nodes should retransmit messages. Our framework is more general and
able to model other classes of protocols.

7 Conclusion

In this paper, we have presented a conceptual framework to specify and eas-
ily define wireless ad hoc broadcast protocols. This framework is based on a
generic broadcast protocol, whose behavior is parameterized across three differ-
ent dimensions: retransmission delay, retransmission policy, and retransmission
context. We employed our framework to study a particularly interesting class
of protocols, those that are neighbor-aware (NABAs). We have implemented
a prototype of a kernel to support the construction and execution of wireless
ad hoc broadcast protocols based on the proposed framework and conducted
an experimental work comparing, in practice and using commodity hardware,
different broadcast protocols. Our results show that neighbor-aware protocols
exhibit interesting results and should be further pursued to enable novel edge
applications for wireless ad hoc networks to emerge.
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[8] Rachid Guerraoui and Lúıs Rodrigues. Introduction to Reliable Distributed
Programming. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[9] Z. J. Haas, J. Y. Halpern, and Li Li. Gossip-based ad hoc routing. In
Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer
and Communications Societies, volume 3, pages 1707–1716 vol.3, June
2002.

[10] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross. A measurement
study of a large-scale p2p iptv system. IEEE Transactions on Multimedia,
9(8):1672–1687, Dec 2007.

[11] R. Hu. Efficient probabilistic information broadcast algorithm over random
geometric topologies. In 2015 IEEE Global Communications Conference
(GLOBECOM), pages 1–6, Dec 2015.

[12] Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten
van Steen. The peer sampling service: Experimental evaluation of
unstructured gossip-based implementations. In Proceedings of the 5th
ACM/IFIP/USENIX International Conference on Middleware, Middle-
ware ’04, pages 79–98, Berlin, Heidelberg, 2004. Springer-Verlag.

[13] Taek Jin Kwon and Mario Gerla. Efficient flooding with passive clustering
(pc) in ad hoc networks. SIGCOMM Comput. Commun. Rev., 32(1):44–56,
January 2002.

[14] J. Leitao, J. Pereira, and L. Rodrigues. Epidemic broadcast trees. In
2007 26th IEEE International Symposium on Reliable Distributed Systems
(SRDS 2007), pages 301–310, Oct 2007.

[15] J. Leitao, J. Pereira, and L. Rodrigues. Hyparview: A membership protocol
for reliable gossip-based broadcast. In DSN’07, pages 419–429, June 2007.

21
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