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Abstract

Wireless ad hoc networks were extensively studied in the past given
their potential for scalability, ease of deployment, and suitability for sce-
narios where no infrastructure is available. Considering the recent rel-
evance of applications, particularly in the Internet of Things (IoT) and
edge computing domains, revisiting these networks becomes a necessity,
as to develop novel distributed applications. Distributed applications are
highly complex as they require multiple services and abstractions sup-
ported by a wide range of distributed protocols, specially in such adverse
domains.

To simplify the development of applications in ad hoc networks, in this
paper we present Yggdrasil, a novel framework and middleware specifically
tailored for the development and execution of distributed applications and
associated protocols using commodity devices in such networks. Yggdrasil
provides a simple yet effective development environment, which is achieved
by combining an event driven programming model with a multi-threaded
execution environment that shield the programmer from concurrency is-
sues. A fully functional prototype was developed in C and experimentally
evaluated using a fleet of 24 Raspberry Pis.

1 Introduction

Wireless ad hoc networks were extensively studied in the past given their po-
tential for scalability, ease of deployment, and suitability for scenarios where
there is no infrastructure, such as war scenarios [37], natural disasters [11],
among others. In this context, multiple protocols were proposed by the scien-
tific community, from routing [13, 31], data aggregation [5, 20], fault tolerant
dissemination [1, 25], and even byzantine agreement protocols [27]. However,
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the number of practical applications based on wireless ad hoc networks, partic-
ularly applications that have large numbers of devices actively interacting and
collaborating, is not significant nowadays, with the exception of very few success
cases [2, 21].

The recent increase in popularity and interest on applications in the Internet
of Things (IoT) [40] and smart cities [4] domains, among others, motivate the
need to revisit and address the inherent challenges of wireless ad hoc networks
[32, 34]. These applications often rely on cloud-based solutions however, given
the rapid increase in the volume of data being generated by such applications,
the cloud is rapidly becoming unable to receive, process, and respond, in a timely
fashion, to the generated load. Given that data generated by such applications
is expected to continue increasing [6], it is essential to build novel solutions to
decentralize data processing. This is also relevant to lower operational costs of
such applications and allow them to be easily deployed and operated (potentially
by common users).

The edge computing paradigm [35] presents itself as a viable solution, as
it promotes moving computations and storage beyond the boundaries of data
centers, allowing computations to be performed closer to end clients, potentially
(but not exclusively) directly on client devices. In some particular scenarios,
such as smart cities, smart spaces, smart agriculture, and smart extraction of
resources (e.g., mining), it may be convenient to support the direct interaction
between edge devices that lack access to network infrastructures. In this case,
the use of wireless ad hoc networks and a variety of distributed protocols for
these scenarios, becomes a viable and interesting approach. Additionally, the
development of novel protocols and solutions for ad hoc networks, may enable
novel distributed applications with edge components, particularly mobile and
highly interactive user-facing applications [14,36].

To enable novel edge applications (that operate over wireless ad hoc net-
works) to emerge, in this paper we present Yggdrasil, a novel framework and
middleware runtime tailored for the development and execution of distributed
applications and associated protocols in wireless ad hoc environments. Yggdrasil
offers developers a simple and effective development environment that promotes
modularity. This is achieved by the clever combination and integration of a set
of well known abstractions and techniques that include: an event-driven exe-
cution model; a multi-threaded execution environment that shields developers
from handling (complex) concurrency issues; simple and intuitive interaction
mechanisms between protocols and applications; and low-level communication
primitives tailored for wireless ad hoc networks. A prototype of Yggdrasil was
developed in C, allowing the execution of protocols and applications in commod-
ity devices (e.g., laptops, micro-computers), while also supporting more resource
constrained devices.

The remainder of the paper is organized as follows: Section 2 discusses
our system model; Section 3 presents the Yggdrasil framework and its main
components; Section 4 illustrates the use of the API provided by Yggdrasil;
Section 5 details our experimental work using a fleet of 24 Raspberry Pi 3 -
Model B; Section 6 briefly discusses related work; and finally, Section 7 concludes
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the paper.

2 System Model

Distributed applications leverage the computational resources of various devices
to provide services for either other applications or users. However, achieving this
in a distributed setting is a daunting task, more so in wireless ad hoc networks
where network infrastructure is not available. Usually, distributed applications
rely on a set of distributed protocols that cooperate to provide abstractions that
support the operation of the application [10].

In more detail, we model a distributed application for wireless ad hoc net-
works as a system operating on a wireless ad hoc network, in which a set of pro-
cesses, that contain application logic and a set of local instances of distributed
protocols, cooperate and interact to materialize the application. Each process
resides in a node (i.e., device), which has its own resources (CPU, memory,
disk, etc). All interactions among different processes are performed through the
exchange of messages via the wireless medium and only instances that reside in
nodes that are directly reachable through their radios can communicate directly.
We say that such processes (or nodes) are neighbors in the ad hoc network.

In the following we analyze a distributed protocol that provides an appli-
cation with the membership of the system, identifying the primitives that are
necessary for a programming framework and runtime middleware (such as Yg-
gdrasil) to support the development of such distributed protocols and applica-
tions.

A Simple Membership Protocol

Distributed protocols are often described as algorithms that follow a state ma-
chine model [7,10,15,16]. As such, protocols are modeled as having an internal
state that can be exposed or evolve through the reception, and handling, of
asynchronous events. Algorithm 1 illustrates a simple membership protocol for
wireless ad hoc networks that maintains, locally at each node, a set containing
the identifiers of all other known processes in the system. The protocol oper-
ates by having each node in the system, periodically, sending (through one-hop
broadcast) a message containing a random sample of up to k nodes present in
the local membership set. Nodes that receive such a message from another node
integrate previously unknown node identifiers into their local state.

The algorithm has a header that denotes the interface of the protocol i.e., the
interactions that the protocol supports with other (local) protocols or applica-
tions. In this example the protocol is able to process a request getMembership
to which it produces a reply members containing a copy of the locally main-
tained set of node identifiers. Furthermore, the membership protocol denoted
in Algorithm 1 also issues a notification newMember whenever a new identifier
is added to the local set. This notification is delivered to any system compo-
nent (protocol or application) that registers interest in receiving it. Notice that
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while a reply is always generated in response to a request (and directed to the
original issuer of the request), a notification can be generated at any point in
the execution of a protocol.

The algorithm defines the local state maintained by the protocol in each
node (Alg. 1 lines 1 − 3). The protocol maintains the set of known members
in the system (Alg. 1 line 2), and the k parameter that controls the maximum
sample size sent in periodic messages. Following the state machine nomencla-
ture, a special Init handler is used to initialize the protocol internal state upon
bootstrap. In the case of this membership protocol, this is achieved by initializ-
ing the membership set with the local node identifier, and setting the value for
parameter k (Alg. 1 lines 5− 6). Since the algorithm relies on a periodic action
(sending a message) it also configures a periodic timer (that triggers every
∆T ). The reception of this special Timer event, leads the protocol state ma-
chine to execute the transmission of the sample message containing the sample
of the local membership set (Alg. 1 lines 8 − 10).

When a sample message is received (Alg. 1 line 12), the protocol adds the
unknown members contained in the message to its local membership (Alg. 1
lines 13 − 14) and triggers a notification to be delivered to any interested local
protocol or application, that notifies the existence of a new node in the system
(Alg. 1 line 15).

3 Yggdrasil

Yggdrasil is a programming framework and middleware runtime that allows
distributed protocols and applications to be easily developed following their
specification. This is possible by the clear and specifically tailored program-
ming model exposed by Yggdrasil. Furthermore, at its core, Yggdrasil combines
multiple techniques to ensure efficient execution of protocols and applications,
namely by ensuring parallel execution (when the hardware allows it) and ensur-
ing low memory and processing footprints, making Yggdrasil suitable not only
for commodity devices but also to devices with limited capability.

3.1 Protocols in Yggdrasil

In Yggdrasil, each protocol is modeled (and implemented) as a state machine.
In more detail, each protocol has its own internal state that evolves accordingly
to the (sequential) reception and processing of events. Protocols can generate
events to be processed by themselves, or to be delivered to other protocols.
The events that guide the execution of protocols are divided in four types,
motivated by common distributed protocols and applications operation and in-
teraction patterns. These are: i) Messages, that are the only type of event
that can be transported between processes (i.e., different nodes), messages can
be destined to all neighboring nodes (i.e., one-hop broadcast) or to a single
neighbor (i.e., point-to-point); ii) Timers, that notify the execution of some
periodic task or that a local timeout occurred; iii) Requests/Replies, that
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Algorithm 1: Example Membership Protocol

Interface:
Requests:

getMembership ( )
Replies:

members ( m ) //m is the set of all known nodes in the system
Notifications:

newMember ( n ) //n is the newly found member of the system

1: Local State:
2: membership //The set of members in the system
3: k //sample size

4: Upon Init ( pid, ∆T , sampleSize) do:
5: membership ←− {pid} //pid is the local process identifier
6: k ←− sampleSize
7: Setup Periodic Timer Announce (∆T )

8: Upon Timer Announce do: //every ∆T
9: subSet ←− getMemberSubSet(membership, k)
10: Trigger OneHopBCast Sample ( subSet )

12: Upon Receive Sample ( subSet ) do:
13: foreach n ∈ subSet : n /∈ membership do:
14: membership ←− membership ∪ n
15: Trigger Notification newMember ( n )

16: Upon Request getMembership ( ) do:
17: Trigger Reply members ( membership )

allow the direct one-to-one interaction between protocols in the local process;
and finally, iv) Notifications, that allow the indirect one-to-many interaction
between protocols in the local process.

Within a Yggdrasil process each protocol and application is, by default,
executed in the context of an independent execution thread, enabling their evo-
lution in parallel. Protocols (and applications) are provided with an event queue
from which they wait for events to be consumed. Each protocol and applica-
tion is internally associated with a numeric identifier. Events are tagged with
the numeric identifier of the protocol which created the event and to which it
should be delivered. This allows events created by one protocol to be delivered
by Yggdrasil to another protocol (or application) by pushing the event into the
appropriate event queue.

We note however, that certain event types are more delay sensitivity than
others (e.g., Timers). To cope with this, event queues are modeled to prioritize
event types, meaning that when different event types are present in the queue,
those are consumed in a specific order according to their type: first timers, then
notifications, messages, and finally requests/replies.
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Figure 1: Simplified Yggdrasil’s Architecture.

3.2 Yggdrasil Design

Figure 1 depicts a high-level overview of Yggdrasil’s architecture. Yggdrasil
operates above the operating system, in particular, it considers a unix-based
general-purpose operating system. From the operating system we assume ab-
stractions to configure the radio device and the wireless network, in addition to
standard abstractions and programming interfaces (e.g., concurrent execution,
synchronization mechanisms such as mutex and semaphores).

Yggdrasil is composed by four main components (darker toned components
in Figure 1) that cooperate to support the execution of protocols and appli-
cations. These include: the Yggdrasil Runtime, which configures the radio
device to enable network communication through the Low Level Yggdrasil
Library, and handles the execution of protocols and applications by provid-
ing the API and managing event queues to consume and produce events; a
Dispatcher Protocol, that handles all network communication; the Timer
Management Protocol, which monitors all Timer events set within the local
Yggdrasil process; and a Protocol Executor, that allows some protocols to
share a single execution thread.

In more detail, an Yggdrasil application starts by initializing the Yggdrasil
Runtime, providing it with a network configuration which includes the radio
mode (in this case ad hoc), the frequency of the radio, and the network name
to be joined (or created). The Runtime configures the radio device through the
Low Level Yggdrasil Library, which uses low level system calls to manipulate
the radio interface. This library is also responsible to provide the Runtime
with a Channel abstraction, through which network messages are exchanged.
The channel is configured as a low-level network communication device, that
allows messages to be exchanged directly at the MAC layer (i.e., layer 2 of the
Network Stack). A kernel packet filter is also installed in the channel to filter
unwanted network messages from sources other than Yggdrasil processes (e.g.,
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ARP packets).
Additionally, the Runtime prepares the remaining main components of Yg-

gdrasil, which we name core protocols. This entails initializing an event queue
for each core protocol and providing the Dispatcher access to the previously
created channel. Core protocols have reserved numeric identifiers however, the
application developer can override each one with a variant of her own design pro-
viding similar or enriched functionality. For instance, the Dispatcher Protocol
could be replaced by one that encrypts and decrypts all network messages.

After the Runtime is initialized, the application registers itself and the pro-
tocols it will use in the Runtime. The Runtime prepares and associates an event
queue for each protocol and application, and triggers the special Init event for
each protocol and application (which in turn, initializes their internal state).
Each protocol and application contains a configuration that is provided to the
Runtime upon their registry. This configuration includes information about
produced and consumed notifications (the latter from other protocols).

Execution Modes

Each protocol and application configuration also states how it should be handled
by the Yggdrasil Runtime: it can rely on an independent execution thread; or
share a single execution thread with other protocols. The latter is achieved by
taking advantage of the Protocol Executor.

Protocols that execute within the Protocol Executor, share the same event
queue, being the Executor responsible to multiplex events across protocols. The
Protocol Executor also allows protocols to be safely started and stoped at run-
time. This allows to have protocols that can be dynamically used by applications
to deal with changes on the operation environment (e.g., using protocols that
make less use of the wireless medium, if the wireless medium appears to be
saturated).

Notice that in Yggdrasil the programmer is not responsible to manage the
execution threads of any protocol. Instead these are managed internally by the
Yggdrasil Runtime.

Support for Piggybacking

In some cases a protocol might benefit from piggybacking information on mes-
sages sent by other protocol. Piggybacking information is a technique often
employed to perform optimizations, in protocols and applications, to lower the
amount of messages sent to the network. This is particularly relevant when
information to be sent is small, since it allows to lower the occupation of the
wireless medium. To enable this behavior, the Yggdrasil Runtime allows a
protocol to intercept the event queue of another protocol. This will lead the
Yggdrasil Runtime to transparently deliver events destined to the intercepted
protocol to the interceptor instead. As pointed out above, this is particularly
useful to add control information to messages. However, the interceptor proto-
col, becomes responsible for: i) routing the event to the original destination (for
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messages, usually the Dispatcher), and ii) replace the destination of the message
to be itself, such that on the remote node, any control information added can
be removed, before the message reaching its original destination.

4 Implementing our Simple Protocol

A fully functional prototype of Yggdrasil was implemented using the C language,
and has been used to implement various protocols and simple (demo) applica-
tions that exercise these protocols. These include, neighbor discovery, fault de-
tectors, different flavors of distributed aggregation, application-level broadcast,
routing, reliable point-to-point communication, topology control, and experi-
ment management protocols; the last two are dedicated to simplify the execu-
tion of (distributed) experimental evaluations. The prototype is available at
https://github.com/LightKone/Yggdrasil.

To showcase how a protocol can be implemented in Yggdrasil, we present an
implementation (Figure 2) of the membership protocol specified in Algorithm 1.
Similar to the specification, the implementation is divided in three parts: i) the
local state, ii) the event handlers, and iii) the initialization of the protocol. The
header section presented in Algorithm 1 is omitted due to lack of space (this is
reported to Yggdrasil as part of the protocol configuration).

We note that there is an expansion in the number of lines between the C
implementation and the pseudo-code represented in Algorithm 1 however, given
the verbosity of the C language, we consider the implementation to be quite
compact, specially when comparing an implementation leveraging Yggdrasil and
a C standalone implementation of the same protocol.

Local State

In Yggdrasil a protocol defines a structure containing the state it maintains.
Lines 2 − 3 in Fig. 2 directly map to lines 3 − 4 in Alg. 1. An uuid t is
a universally unique identifier, represented by a char[16] and a list* is
a pointer to a generic list type. The following line 5 in Fig. 2 is a variable
specific to Yggdrasil, the proto id, which represents the protocol’s unique
numeric identifier, whose value should be defined (by Yggdrasil convention) in
the protocol’s header file.

Event Handlers

The protocol handles three types of events: timers (Fig. 2 lines 8−18); messages
(Fig 2 lines 20− 33); and requests (Fig. 2 lines 35− 46). We note however, that
if a protocol processes different events of the same type (e.g., different types of
messages), these have to be multiplexed by the protocol when handling that type
of event. This is because the Yggdrasil Runtime does not have knowledge of
how protocols internally operate to avoid breaking the isolation that Yggdrasil
imposes over protocols, and minimize complex interactions between protocols
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1 /* ---------------- Local State ------------------ */
2 typedef struct state {
3 list* members;
4 int k;
5 short proto_id;
6 };
7 /* --------------- Event Handlers ---------------- */
8 static short Announce(YggTimer* timer, struct state* state) {
9 YggMessage msg; YggMessage_initBcast(&msg, state->proto_id);

10 list* subSet = getMemberSubSet(state->members, state->k);
11 while(subSet->size > 0) {
12 char* member_id = list_remove_head(subSet);
13 YggMessage_addPayload(&msg, member_id, sizeof(uuid_t));
14 free(member_id);
15 }
16 dispatch(&msg); YggMessage_freePayload(&msg);
17 return SUCCESS;
18 }
19
20 static short ReceiveSample(YggMessage* msg, struct state* state) {
21 void* ptr = NULL; uuid_t id;
22 while((ptr = YggMessage_readPayload(msg, ptr, id, sizeof(uuid_t))) != NULL) {
23 if(list_find_item(state->members, (equal_function) equal_id, id) == NULL){
24 char* mid = malloc(sizeof(uuid_t)); memcpy(mid, id, sizeof(uuid_t));
25 list_add_item_to_head(state->members, mid);
26
27 YggEvent ev; YggEvent_init(&ev, state->proto_id, NEW_MEMBER);
28 YggEvent_addPayload(&ev, id, sizeof(uuid_t));
29 deliverEvent(&ev); YggEvent_freePayload(&ev);
30 }
31 }
32 return SUCCESS;
33 }
34
35 static short getMembers(YggRequest* req, struct state* state) {
36 if(req->request == REQUEST && req->request_type == GET_MEMBERS){
37 YggRequest_freePayload(req); //should already be NULL
38 YggRequest_Reply(req, state->proto_id);
39 for(list_item* i = state->members->head; i != NULL; i = i->next) {
40 YggRequest_addPayload(req, (char*) i->data, sizeof(uuid_t));
41 }
42 deliverReply(req); YggRequest_freePayload(req);
43 return SUCCESS;
44 }
45 return FAILED;
46 }
47 /* ---------------- Initialization ----------------- */
48 proto_def* membership_init(membership_param* args) {
49 struct state* state = malloc(sizeof(struct state));
50 char* pid = malloc(sizeof(uuid_t); getmyId(pid);
51 state->members = list_init(); list_add_item_to_head(state->members, pid);
52 state->proto_id = PROTO_MEMBERSHIP;
53
54 proto_def* membership = create_protocol_definition(state->proto_id, "Membership", state,

membership_state_destroy);
55 proto_def_add_produced_notifications(membership, 1); //NEW_MEMBER
56
57 proto_def_add_msg_handler(membership, ReceiveSample);
58 proto_def_add_timer_handler(membership, Announce);
59 proto_def_add_request_handler(membership, getMembers);
60
61 YggTimer_init(&state->announce, state->proto_id, state->proto_id);
62 YggTimer_set(&state->announce,
63 args->announce_period_s, args->announce_period_ns, //first notification
64 args->announce_period_s, args->announce_period_ns);//periodicity
65
66 setupTimer(&state->announce);
67 return membership;
68 }

Figure 2: Membership Yggdrasil Implementation.

and the Yggdrasil Runtime, such as registering each message handled by a
protocol individually.

When the protocol processes a timer (Fig. 2 line 8), it begins by creating and
initializing a message to be sent to the MAC broadcast address (ff:ff:ff:ff:ff:ff)
(Fig. 2 line 9). The protocol proceeds to generate a subset of members (we omit
details on this function) and adds each node identifier to the message’s payload
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(Fig. 2 lines 10 − 15). The instruction YggMessage addPayload, copies the
contents of state->n id with size sizeof(uuid t), to the next available
position in the message’s payload (calculated automatically by taking into con-
sideration the number of bytes added previously) and updates the size of the
message payload. The message is sent to the Dispatcher with the instruction
dispatch (Fig. 2 line 16), which performs a deep copy into the Dispatcher
Protocol’s event queue. Deep copies are used when adding events to queues
to avoid concurrency issues. Finally, because event payloads are dynamically
allocated in Yggdrasil, the payload of the message must be freed (Fig. 2 line 16).

When the protocol processes a message (Fig. 2 line 20), it reads the member
identifiers in the payload of the received message, and verifies, for each one, if it is
already contained in its local membership list. If a new member is found (not in
the local membership list), the protocol adds the new member’s identifier to its
local membership list (Fig. 2 lines 22−25). The important aspect to notice here
is how the payload is read with the instruction YggMessage readPayload.
This instruction reads sizeof(uuid t) bytes from the payload of the msg
starting at the position pointed by ptr (if NULL, from the beginning), stores
the read contents in id, and returns a pointer to the last position read (or
NULL if there are no more bytes to be read). The protocol proceeds to create
a notification (defined as YggEvent), adds the new member’s id to the noti-
fication payload, asks the Runtime to deliver it to all interested protocols and
applications, and frees the payload (Fig. 2 lines 27 − 29).

Lastly, when the protocol processes a request (Fig. 2 line 35), it first certifies
that the received request is valid (according to the protocol logic), prepares the
reply (adding all known members to the reply payload) and delivers the reply to
the corresponding protocol, freeing the payload in the end (Fig. 2 lines 36−42).
This is analogous to how previous events are handled.

Initialization

The initialization of the membership protocol (Fig. 2 line 48) is the one that
differs the most from Algorithm 1. This is because this function is also respon-
sible to define the protocol configuration for the Yggdrasil Runtime. We named
this configuration: protocol definition (or proto def). The functions begins
by initializing the protocol state (Fig. 2 lines 49−52). It then creates a protocol
definition, that contains the protocol’s numeric identifier, its name, state, and
a function to release the state (Fig. 2 line 54). Finally, it defines the notifica-
tions produced by this protocol, that can be consumed by any other protocol
or applications (Fig. 2 line 55).

The function proceeds to register event handlers that the protocol has (Fig. 2
lines 57 − 59). This will signal the Yggdrasil Runtime to register the protocol
in the Protocol Executor. Alternatively, the protocol can register a main loop
function to signal the desire to execute in an independent execution thread.
The main loop function of a protocol will be provided with the protocol’s event
queue and state, and is responsible to retrieve events from the event queue
and multiplex them by type, calling the corresponding event handlers. This
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Figure 4: Performance Evaluation of Distributed Protocols.

provides more flexibility to the developer to implement complex behaviors in
her protocol. We omit the implementation of this function due to lack of space.

Finally, the initialization proceeds to setup the announce timer event for its
periodic task (Fig. 2 lines 61 − 66); and returns the protocol definition to be
processed by the Yggdrasil Runtime.

5 Experimental Evaluation

In this section we present our experimental evaluation of Yggdrasil to comple-
ment and demonstrate that distributed protocols and applications can be im-
plemented and executed within Yggdrasil with minimal effort and performance
overhead. The evaluation is divided in two parts: In the first, we experimentally
evaluate implementations of three different classes of distributed protocols and
simple demo applications that exercise them using Yggdrasil. In the second,
we measure the overhead of events (in particular messages) passing through the
event queues of Yggdrasil.
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5.1 Protocols Performance in Yggdrasil

We have implemented three classes of protocols for wireless ad hoc networks
(and demo applications that exercise them) in Yggdrasil. These include: i) a
simple broadcast protocol based on flooding (similar to the one discussed in [16]
for wired networks); ii) a popular routing protocol for wireless ad hoc networks,
the B.A.T.M.A.N. (V4) routing protocol [13]; and iii) an aggregation protocol,
GAP [8].

The Yggdrasil demo applications were deployed in a real testbed composed
by a fleet of 24 Raspberry Pis 3 - Model B, executed for a period of 10 minutes,
and evaluated relevant performance metrics for each protocol class. The devices
were scattered through our department building across two hallways (each with
approximately 30m) and rooms as depicted in Figure 3. We also note that some
devices were positioned near access points and other devices frequently polluting
the wireless environment. Each demo application produces logs related to the
protocol it is exercising, which were post-processed after all experiences had
concluded. In the following we briefly describe each application and protocol
and discuss the results in Figure 4.

Broadcast Protocol

The application that exercises the broadcast protocol operates as follows: every
two seconds, each process independently and randomly decides with a probabil-
ity of 50% to broadcast a message containing the identifier of the process and a
unique monotonic identifier by issuing a request to the broadcast protocol. All
nodes register to a log messages disseminated by them and messages received
from the network.

The broadcast protocol is fairly simple. It first retrieves the message to
be disseminated from the request, delivers it to the application, and schedules
the message for transmission with a jitter, as to avoid broadcast storms [30].
Messages delivered are stored in a list to ensure at most once delivery semantics
and garbage collected (after a long enough period of time) by a periodic task.
The protocol is implemented with approximately 200 lines of C code.

Performance Results. In this experiment we consider as performance
metric the delivery rate of broadcast messages (i.e., the fraction of nodes that
deliver a given message). Figure 4a reports our results in the form of a com-
mutative distribution function (CDF) that shows the percentage of messages
(in the y-axis, note that it is in logarithmic scale) in function of the fraction of
nodes that delivered it (in the x-axis). The results show that the large majority
of disseminated messages (in total there were approximately 3, 500 messages
disseminated) were delivered by every node. Only a small fraction, below 10%,
of messages were delivered by fewer nodes. This however is not surprising, since
collisions in the wireless medium still happen, despite the transmission delays
employed by the protocol to mitigate this effect.
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Table 1: 95th percentile delay of sending a message in milliseconds.

A:W/out
Yggdrasil

B:W/Yggdrasil C:W/Idle D:W/Idle
Intercept

Raspberry Pi 0.110729 0.182161 0.186275 0.211146
GRiSP 1.983731 3.137988 3.155992 3.418891

Routing Protocol

The application that exercises the routing protocol operates akin to the previous
one. It decides to transmit a message with a probability of 50% every two
seconds, to a randomly chosen node out of the 23 possible destinations (nodes
do not send messages to themselves) and requests the B.A.T.M.A.N. protocol
to deliver it to the correct destination. A variant of this application was also
used to exercise a reference implementation of the B.A.T.M.A.N. (also written
in C) that operates as a linux daemon (found in https://www.open-mesh.
org/projects/open-mesh/wiki). In both applications, each node logs all
messages sent and received.

The operation and specification of the B.A.T.M.A.N. protocol can be found
in [29]. Our implementation performs some simplifications regarding the orig-
inal specification, which do not compromise the operation of the protocol. In
particular, we represent the protocol’s sliding window (used to compute routes)
in an array of shorts, rather than a bit mask; and ignore aspects to support
gateways and external networks. This totals in less than 500 lines of C code.
An informal comparison with the reference implementation reveals, after a care-
ful analysis of the code, that the reference implementation represents the core
logic of the protocol in almost 4 times more lines of code (roughly 2, 000 lines)
than our own. This is mostly due to the daemon having to deal with every
aspect of the protocol’s operation, from the network interface management to
the serialization of messages into network buffers.

Performance Results. In this experimental comparison we measure the
fraction of messages sent by each node that were effectively received at their
destination. Figure 4b reports the delivery ratio per individual node in our
deployment, using each of the routing alternatives, as well as the average delivery
ratio for all nodes (the final pair of columns labeled all). We note that in
each experiment there were approximately 3, 500 messages sent, with each node
transmitting close to 150 messages. The results show that both implementations
present very similar performance, validating that Yggdrasil can simplify the
development of distributed protocols. In fact, when considering the average
delivery ratio, our implementation surpasses the B.A.T.M.A.N. daemon by 3%.
We note that this difference is most probably caused by wireless interference.
Note that both implementations of the protocol route messages using unicast
messages, which benefit from collision-avoidance and retransmission mechanisms
implemented at the MAC layer, which justifies why routing is less affected by
collisions in the wireless medium when compared with the broadcast protocol.
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Aggregation Protocol

The application that exercises the aggregation protocol periodically (every sec-
ond) queries GAP [8] for the estimate of the aggregation result. GAP is con-
figured to compute the average aggregate function. The input values for the
aggregation are statically configured to be each node’s identifier (a number
from 1 to 24), which implies that the correct computed average value is 12.5.
GAP is configured to transmit periodic updates of its local estimate of the ag-
gregate value (and other information related to the protocol’s operation) every
two seconds (while the estimate is not considered stable). GAP requires a node
to act as a root node for a tree established by the protocol. A random node was
selected for this purpose (node 5). Furthermore, the application also configures
a discovery protocol enriched with a fault detection mechanism to provide GAP
with the local neighborhood.

More details on the operation of GAP can be found in the original paper [8].
Our implementation follows the complete protocol as specified by the authors.
However, the authors propose different policies to deal with the management
of estimates received from neighbors. Our implementation only supports the
proposed default policy, which maintains all estimates from neighbors as long
as they are not suspected of failure. The protocol was implemented in less than
400 lines of C code.

Performance Results. Figure 4c reports the obtained results, only at
the root node, where we depict the estimate of the aggregated value over time
(we remind the reader that all experiments were conducted for a period of 10
minutes). For the convenience of the reader we also present a green solid line
that represents the target (i.e., correct) value. This allows to infer the precision
of the aggregation process in the root node. The results show that for the first
few hundreds of seconds of the experiment, the root node has an estimate that
only deviates from the correct value in approximately 1.7 units. This value
then fluctuates around the 250 seconds mark and get much closer to the correct
value (a difference as small as 0.25 units) for the remainder of the experiment.
The protocol is unable to achieve the correct value, due to frequent loss of
messages in a segment of the ad hoc network. This clearly shows the practical
benefits of employing tools such as Yggdrasil for validation of solutions in ad
hoc networks, that allows to run experiments on real settings instead of relying
solely on simulation [12,33].

5.2 Overhead Evaluation

To measure the overhead generated by the use of Yggdrasil, we have conducted
an experiment where we measured the amount of time required for a message
to be sent to the network (i.e., request the kernel to send the message to the
network) in several configurations. In the following we detail our experimental
methodology and obtained results.
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Experimental Methodology

In this experiment we have developed four variants of a simple application in
C code, that sends a message to the network every second. This application
is executed for more than 10, 000 seconds (slightly bellow 3 hours), sending
a total of 10, 000 messages. The application variants are the following: i) in
variant A the application is not implemented using Yggdrasil, as such it sends
messages by directly using the OS kernel; ii) in variant B the application is
implemented using Yggdrasil. The application delegates the functionality of
sending the message to the Dispatcher Protocol; iii) variant C is similar to the
previous having the application executing concurrently with an idle protocol;
and iv) variant D: the idle protocol intercepts the Dispatcher protocol’s event
queue processing all messages sent by the application.

These experiments were executed in one of the Raspberry Pis, which has
a four core CPU with a clock rate of 1.2Ghz and 1GB of memory; and on
an embedded system board named GRiSP in its first version (https://www.
grisp.org), having a microchip CPU with a clock rate of 300Mhz and 64MB
of memory. This board executes a Real Time Embedded Multiprocessor Sys-
tem (RTEMS), which is based on an unix system that is directly linked (as a
collection of libraries) with the application to be executed in the board (also
implemented in C). For each variant we logged a timestamp immediately before
the creation of the message, and immediately after the message was delivered to
the network. We correlated these data points for each message offline. During
each experiment, the CPU and memory consumptions were also gathered using
standard profiling tools (e.g., perf, top, and built-in tools in RTEMS).

Experimental Results

Table 1 reports the 95th percentile delay of sending a message in milliseconds
for each of our experiments detailed above. The results show that employing
Yggdrasil (in variant B) in a Raspberry Pi incurs in an increased delay of around
0.07 milliseconds, whereas in a GRiSP board, the increased delay is around 1.15
milliseconds. The overhead increase is expected, since additional processing is
required.

Executing another protocol concurrently (variant C ) results in a relatively
small overhead that is not significant (0.004 and 0.02 milliseconds in the Rasp-
berry Pi and the GRiSP respectively). When the protocol intercepts the message
(variant D) it results in an increased delay of 0.025 milliseconds in a Raspberry
Pi and 0.35 milliseconds in a GRiSP. The overhead is caused by the intercept
behavior requiring two additional memory copies for the message to reach the
Dispatcher.

Regarding the CPU and memory consumptions we have observed few varia-
tions of values in our experiments. The CPU consumption in the Raspberry Pi
was observed to be around 0.01%, while in the GRiSP board it was observed to
be approximately 1%. The low CPU usage is expected has most of the compo-
nents in Yggdrasil are idly waiting for events (i.e., not performing active waits).
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The memory consumption was observed to be in both platforms approximately
700 KiB (1 KiB = 1024 bytes) of resident memory (this value does not take into
account the memory footprint of RTEMS in the GRiSP board). This implies
that the memory footprint of Yggdrasil is relatively low (bellow 1 MB).

Overall, our results show that Yggdrasil presents a very modest overhead
considering the functionalities it provides to protocols and applications and the
gains in terms of implementation effort for developers.

6 Related Work

There have been other frameworks and middleware solutions proposed to sup-
port the development of distributed protocols/systems and their execution. Yg-
gdrasil, to the best of our knowledge, is the first to combine a simple and generic
development environment for wireless ad hoc networks with the ability to be
executed in general purpose operating systems on commodity devices.

Yggdrasil shares some design principles with previously proposed protocol
composition frameworks, in particular, its event-driven programming model.
Frameworks, such as Appia [26], Horus [38], Eva [3], and Cactus [24] were
original designed considering wired environments, and lack low-level commu-
nication primitives that allow processes to easily (without resorting to IPs)
exchange messages on a wireless ad hoc network.

Lightweight operating systems, such as TinyOs [17], Impala [18], and Con-
tiki [9], are used to build wireless ad hoc systems. Nevertheless, these specialize
in wireless sensor networks, and target small families of hardware, failing to be
general purpose.

Middlewares that provide communication among processes in ad hoc net-
works have also been proposed. These include STEAM [23] and EMMA [28].
However, their focus is solely providing communication primitives based on
point-to-point and pub-sub models, instead of a generic programming model.

More distant from the goals of this work, and reacting to the increasing
popularity of edge computing [35] and fog computing [22], other frameworks
and solutions to support the development of applications in these contexts have
recently been proposed, mostly in the field of Internet of Things (IoT) [40].
These include solutions and systems such as Stack4Things [19], and ENORM
[39]. Nonetheless, these solutions do not focus on wireless ad hoc networks,
nor on building the fundamental support to leverage those networks to perform
complex tasks cooperatively.

7 Conclusion

In this paper we address the challenges related with developing, implement-
ing, and executing, distributed applications and protocols for wireless ad hoc
networks that leverage commodity devices and general purpose operating sys-
tem, while supporting resource constrained devices. We have presented a novel
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framework and middleware runtime, named Yggdrasil, that offers key abstrac-
tions and a programming model that is highly suitable for developing distributed
protocols. We have developed a prototype of Yggdrasil in the C language, and
have extensively evaluated it by implementing three different classes of dis-
tribute protocols. These include broadcast, routing, and aggregation protocols.
We have experimentally validated our implementations and have shown that in
general, Yggdrasil provides abstractions that allow to implement these protocols
with a lower amount of effort (when compared with stand alone implementa-
tions), and that the execution of protocols using Yggdrasil presents adequate
performance. We expect Yggdrasil to be an enabler of novel solutions, and assist
in developing novel IoT and smart cities/spaces applications.

As future work, we plan to enrich Yggdrasil to support other network ab-
stractions and to improve support to autonomic reconfiguration of individual
protocols and protocol stacks in response to dynamic runtime conditions.
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